Volver a Guía
    
                    
                
                    
                    
                    
Ir al curso
            
            
    
        
            
                
                    
                        
                            
                    
                    
                    
                        
                            
                                
                                    
                                    
                                        
                                    
                        
                    
                    
                        
                        
                        
                        
                            
                                
                                    
                                        
                                
                            
                            
                                
                                    
                                                                                    
                                                
                                                    
                                                        
                                                    
                                                    
                                                
                                                                            
                                
                            
                        
                        
                        
                            
                                
                            
                                
                                                                    
                                                            
                        
                    
                
            
        
    
        
    CURSO RELACIONADO
Análisis Matemático 66
                        
                            2025                        
                        
                            
                                                                    
                                        CABANA                                    
                                
                            
                    
                    
                        ¿Te está ayudando la guía resuelta?
                        Sumate a nuestro curso, donde te enseño toda la materia de forma súper simple. 🥰
                    
Ir al curso
                                ANÁLISIS MATEMÁTICO 66                                UBA XXI                            
                            
                            
                            
                                CÁTEDRA CABANA                            
                        
                                            
                                                3.7.
                                                Mediante la regla práctica y las propiedades, hallar las funciones derivadas de:                                                                                            
                                            
e) $f(x)=\frac{x^{2}+1}{3 x \cos (x)}+\cos (\pi)$
                                    e) $f(x)=\frac{x^{2}+1}{3 x \cos (x)}+\cos (\pi)$
Respuesta
                                            $f(x)=\frac{x^{2}+1}{3 x \cos (x)}+\cos (\pi)$
                                                                    
                                Reportar problema
                                
                                
                            La primera expresión es un cociente entre dos cosas que dependen de $x$, así que aplicamos la regla del cociente. La segunda parte es $\cos(\pi)$... que no te confunda, eso es simplemente un número, más precisamente es $\cos(\pi) = -1$, así que su derivada es simplemente $0$. 
Si aplicamos la regla del cociente:
\( f'(x) = \frac{(2x)(3x\cos(x)) - (x^2+1)(3\cos(x) - 3x\sin(x))}{(3x\cos(x))^2} \)
*Atenti por las dudas, cuando al aplicar la regla del cociente hacemos "el 2° derivado", fijate que ahí tenés que aplicar la regla del producto para derivar $3x\cos(x)$
                                        🤖
                                    ¿Tenés dudas? Pregúntale a ExaBoti
Asistente de IA para resolver tus preguntas al instante🤖
                                                ¡Hola! Soy ExaBoti
Para chatear conmigo sobre este ejercicio necesitas iniciar sesión
Confirmar eliminación
¿Estás segurx de que quieres eliminar esta respuesta? Esta acción no se puede deshacer.
Confirmar eliminación
¿Estás segurx de que quieres eliminar este comentario? Esta acción no se puede deshacer.
Confirmar eliminación
¿Estás segurx de que quieres eliminar esta respuesta? Esta acción no se puede deshacer.
Confirmar eliminación
¿Estás segurx de que quieres eliminar esta respuesta? Esta acción no se puede deshacer.
Confirmar eliminación
¿Estás segurx de que quieres eliminar este comentario? Esta acción no se puede deshacer.